Selected Publications
Qu D, Ge P, Botella L, Park SW, Lee HN, Thornton N, Bean JM, Krieger IV, Sacchettini JC, Ehrt S, Aldrich CC, Schnappinger D. Mycobacterial biotin synthases require an auxiliary protein to convert dethiobiotin into biotin. Nat Commun. 2024 May 16;15(1):4161.
Sharma R, Hartman TE, Beites T, Kim JH, Eoh H, Engelhart CA, Zhu L, Wilson DJ, Aldrich CC, Ehrt S, Rhee KY, Schnappinger D. Metabolically distinct roles of NAD synthetase and NAD kinase define the essentiality of NAD and NADP in Mycobacterium tuberculosis. mBio. 2023 Aug 31;14(4):e0034023.
Bosch, B. et al. Genome-wide gene expression tuning reveals diverse vulnerabilities of M. tuberculosis. Cell 184, 4579–4592.e24 (2021).
Grover, S. et al. Two-Way Regulation of MmpL3 Expression Identifies and Validates Inhibitors of MmpL3 Function in Mycobacterium tuberculosis. ACS Infect. Dis. 7, 141–152 (2021).
Aldridge, B.B., Barros-Aguirre, D., Barry, C.E. et al. The Tuberculosis Drug Accelerator at year 10: what have we learned?. Nat Med 27, 1333–1337 (2021).
Johnson, Eachan O et al. Large-scale chemical-genetics yields new M. tuberculosis inhibitor classes. Nature 571(2019)
Beites, Tiago et al. Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nature communications 10(2019)
Ballinger, E., et al. Opposing reactions in coenzyme A metabolism sensitize Mycobacterium tuberculosis to enzyme inhibition. Science 363(2019).
Tiwari, D., et al. Targeting protein biotinylation enhances tuberculosis chemotherapy. Sci Transl Med 10(2018).
Ehrt, S., Schnappinger, D. & Rhee, K.Y. Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nature Reviews Microbiology 16, 496-507 (2018).
Rock, J.M., et al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat Microbiol 2, 16274 (2017).
DeJesus, M.A., et al. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. MBio 8(2017).
Botella, L., Vaubourgeix, J., Livny, J. & Schnappinger, D. Depleting Mycobacterium tuberculosis of the transcription termination factor Rho causes pervasive transcription and rapid death. Nat Commun 8, 14731 (2017).
Lin, K., et al. Mycobacterium tuberculosis Thioredoxin Reductase Is Essential for Thiol Redox Homeostasis but Plays a Minor Role in Antioxidant Defense. PLoS Pathogens 12, e1005675 (2016).
Schnappinger, D., O'Brien, K.M. & Ehrt, S. Construction of conditional knockdown mutants in mycobacteria. Methods in Molecular Biology 1285, 151-175 (2015).
Schnappinger, D. Genetic Approaches to Facilitate Antibacterial Drug Development. Cold Spring Harb Perspect Med 5, a021139 (2015).
Park, S.W., et al. Target-based identification of whole-cell active inhibitors of biotin biosynthesis in Mycobacterium tuberculosis. Chemistry & Biology 22, 76-86 (2015).
Kim, J.H., et al. A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proceedings of the National Academy of Sciences of the United States of America 110, 19095-19100 (2013).
Woong Park, S., et al. Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLoS Pathogens 7, e1002264 (2011).
Kim, J.H., et al. Protein inactivation in mycobacteria by controlled proteolysis and its application to deplete the beta subunit of RNA polymerase. Nucleic Acids Research 39, 2210-2220 (2011).
Duckworth, B.P., et al. Bisubstrate adenylation inhibitors of biotin protein ligase from Mycobacterium tuberculosis. Chemistry & Biology 18, 1432-1441 (2011).
Marrero, J., Rhee, K.Y., Schnappinger, D., Pethe, K. & Ehrt, S. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proceedings of the National Academy of Sciences of the United States of America 107, 9819-9824 (2010).